ПРАВИЛЬНЫЕ РЕШЕНИЯ ЗАДАНИЙ

второго (заключительного) этапа Республиканской школьной олимпиады «Будущее Республики» по общеобразовательному предмету «Физика», проведенного 14 февраля 2021 г. ГОУ ВПО «Донецкий национальный технический университет»

ОТВЕТЫ НА

ЗАДАНИЯ ВТОРОГО (ЗАКЛЮЧИТЕЛЬНОГО) ЭТАПА РЕСПУБЛИКАНСКОЙ ШКОЛЬНОЙ ОЛИМПИАДЫ «БУДУЩЕЕ РЕСПУБЛИКИ» ПО ФИЗИКЕ

1. С каким максимальным периодом можно равномерно вращать в вертикальной плоскости шарик, привязанный к нити, имеющей длину l = 2,45 м? (20 баллов)

Возможное решение:

Шарик совершает полный оборот по окружности в вертикальной плоскости, при этом натяжение нити в верхней точке (и только в ней) обращается в нуль, т. е. выполняется условие

$$ma_{\text{iic}} = mg$$
,

где
$$a_{\text{nc}} = \frac{v^2}{l}$$
.

Заменим $v = \omega l = \frac{2\pi}{T} l$. Из этого уравнения следует, что максимальному периоду соответствует минимальная скорость. Сделав подстановку, получим

$$\left(\frac{2\pi}{T}l\right)^2 \cdot \frac{1}{l} = g .$$

Максимальный период вращения шарика в вертикальной плоскости определяется условием

$$T \le 2\pi \sqrt{\frac{l}{g}}$$
.

Подставляя числовые данные, получаем ответ

$$T \le 2 \cdot 3{,}14\sqrt{\frac{2{,}45}{9{,}8}} = 3{,}14(c)$$
.

2. Автомобиль массой 1 т двигался по инерции со скоростью 5 м/с. Подключив двигатель, автомобиль начал разгоняться. Считая полезную мощность двигателя постоянной и равной 10 кВт, определите, с какой скоростью будет двигаться автомобиль через 10 с после подключения двигателя? Начертите график зависимости его скорости от времени. Силами сопротивления пренебречь.

(20 баллов)

Дано:
$$m = 1$$
 т = 10^3 кг $P = 10$ кВт = 10^4 Вт

$$t = 10 c$$

$$v_1 = 5 \text{ m/c}$$

Найти:
$$v_2 = ?$$

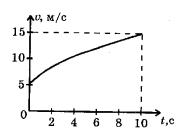
Нарисовать график зависимости скорости от времени.

Возможное решение:

Автомобильный двигатель за время t совершил работу A = Pt. По теореме о кинетической энергии эта работа равна изменению кинетической энергии

$$Pt = \frac{mv_2^2}{2} - \frac{mv_1^2}{2} ,$$

где v_2 – скорость в момент времени t


Отсюда получаем формулу

$$v_2 = \sqrt{\frac{2Pt}{m} + v_1^2} .$$

Подставляя числовые данные, получаем

$$v_2 = \sqrt{\frac{2 \cdot 10^4 \cdot 10}{10^3} + 5^2} = 15 (\text{M/c}).$$

График зависимости скорости от времени в данном случае представляет собой параболу, а не является прямой линией. Это означает, что движение автомобиля не является равноускоренным.

3. Заряженный до потенциала $\varphi = 1000 \text{ B}$ шар радиусом R = 20 см соединяют с незаряженным шаром длинным проводником. После этого соединения потенциал шаров оказался равным $\varphi_1 = 300 \text{ B}$. Каков радиус второго шара?

(20 баллов)

Дано:
$$\phi = 1000 \text{ B}$$

$$\phi_1 = 300 \text{ B} \phi_1 = 300 \text{ B}$$

$$R = 20 \text{ cm}$$

Возможное решение: Электроёмкость уединённого шара радиусом R равна $C = 4\pi\epsilon_0 R$. Такой шар, заряженный до потенциала ϕ , имеет заряд $q = C\phi = 4\pi\epsilon_0 R\phi$. После соединения этого шара с другим, незаряженным шаром, произойдёт перетекание заряда. Условием равновесия является равенство потенциалов: $\phi_1 = \phi_2$, т. е.

$$rac{q_1}{4\pi arepsilon_0 R} = rac{q_2}{4\pi arepsilon_0 r}$$
 , или $rac{q_1}{R} = rac{q_2}{r}$. Откуда $q_2 = q_1 rac{r}{R}$

При этом выполняется закон сохранения заряда $q = q_1 + q_2$. Тогда

$$q_1+q_1rac{r}{R}=q=4\pi arepsilon_0 R \phi$$
 , или $q_1\!\!\left(1+rac{r}{R}
ight)\!=4\pi arepsilon_0 R \phi$.

Учитывая, что $\frac{q_1}{4\pi\epsilon_0 R} = \phi_1$ получаем $\phi_1 \left(1 + \frac{r}{R}\right) = \phi$. Решая это уравнение

относительно r, получаем результат

$$r = R \cdot \left(\frac{\varphi}{\varphi_1} - 1\right).$$

Подставляя числовые данные, находим ответ

$$r = 20 \cdot \left(\frac{1000}{300} - 1\right) \approx 46,7 \text{ (cm)}.$$

4. Два источника с одинаковыми ЭДС $\varepsilon = 120$ В соединены параллельно. Определить напряжение на зажимах и мощность, развиваемую каждым из них, если сопротивление внешней цепи R = 10 Ом. Внутренние сопротивления источников $r_1 = 0.5$ Ом и $r_2 = 0.6$ Ом.

(20 баллов)

Дано: ε = 120 В

 $R = 10 \, \text{Ом}$

 $r_1 = 0.5 \text{ Om}$

 $r_2 = 0.6 \text{ Om}$

Найти: $U_{\text{H}}=?$ $P_1=?$ $P_2=?$

Возможное решение:

Два источника с одинаковыми эдс, соединённые параллельно, можно заменить источником с той же эдс, но с внутренним сопротивлением

$$r = \frac{r_1 r_2}{r_1 + r_2} = \frac{0.5 \cdot 0.6}{0.5 + 0.6} = 0.27 \, (\text{Om}) .$$

Тогда, используя закон Ома для замкнутой цепи, содержащей эдс, находим ток в цепи

$$I = \frac{\varepsilon}{R+r} = \frac{120}{10+0.27} = 11,7 \text{ (A)}$$

Напряжение на зажимах $U_{H} = IR = 11,7 \cdot 10 = 117 (B)$

Чтобы рассчитать мощность, развиваемую каждым источником, нужно найти токи, текущие через каждый источник. Это можно найти из условия $U_{_{\rm H}}=I_{_1}r_{_1}=I_{_2}r_{_2}$

и
$$I = I_1 + I_2$$

Решая эту систему уравнений, находим $I_1 = 6.37$ (A) и $I_2 = 5.33$ (A).

Тогда мощность, развиваемая каждым источником, будет равна

$$P_1 = I_1 \varepsilon = 6.37 \cdot 120 = 764 (B_T)$$

$$P_2 = I_2 \varepsilon = 5.33 \cdot 120 = 640 (B_T)$$

5. Шарик падает без начальной скорости с высоты 1 м на собирающую линзу и разбивает её. В начальный момент времени расстояние от шарика до линзы в два раза меньше расстояния от линзы до действительного изображения шарика. Найти время существования мнимого изображения.

(20 баллов)

Дано:
$$d = 1$$
 м $f = 2d$

Найти $\Delta t = ?$

Возможное решение:

Мнимое изображение в собирающей линзе существует, когда предмет находится на расстоянии между фокусом и линзой. Для нахождения фокусного расстояния воспользуемся формулой тонкой линзы

$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f} .$$

Используя условие задачи f = 2d , находим $F = \frac{2}{3}d = 0.67$ (м) .

Шарик падает с высоты d=1 м без начальной скорости. До удара о линзу пройдёт время $t_0=\sqrt{\frac{2d}{g}}=\sqrt{\frac{2\cdot 1}{9,8}}=0,45$ (c) .

Время движение до фокуса

$$t_1 = \sqrt{\frac{2(d-F)}{g}} = \sqrt{\frac{2 \cdot (1-0.67)}{9.8}} = 0.26(c)$$

Тогда время движения от фокуса до линзы, т. е. время существования мнимого изображения оказывается равным $\Delta t = t_0 - t_1 = 0.19$ (c)