ПРАВИЛЬНЫЕ РЕШЕНИЯ ЗАДАНИЙ

первого (отборочного) этапа Республиканской школьной олимпиады «Будущее Республики» по общеобразовательному предмету «Химия», проведенного 23 января 2021 г. ГОУ ВПО «Донецкий национальный университет»

ОТВЕТЫ НА ЗАДАНИЯ

первого (отборочного) этапа

Республиканской школьной олимпиады «Будущее Республики»

по общеобразовательному предмету «Химия»

Задача 1

1)
$$\omega\%(V) = 100 \% - \omega\%(0)$$

 $\omega\%(V) = 100 - 43.96 = 56,04 \%$
 $V:O = \frac{\omega(V)}{Ar(V)}: \frac{\omega(O)}{Ar(O)} = \frac{56.04}{51}: \frac{43.96}{16} = 1.1: 2.75 = 1: 2,5$

 $VO_{2.5}$, следовательно $X = V_2O_5$

5 баллов

2)
$$V_2O_5 + 5C \rightarrow 2V + 5CO$$

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$

5 баллов

3)
$$\omega\%(V) = 55\%$$

 $\omega\%(Fe) = 100 - \omega\%(V)$
 $\omega\%(Fe) = 100 - 55 = 45\%$

В 100 г феррованадия содержится: 55 г ванадия и 45 г железа

$$v = \frac{m}{M}$$
 $v(V) = \frac{55}{51} = 1,08$ моль $v(Fe) = \frac{45}{56} = 0,80$ моль $0,54$ моль $1,08$ моль V_2O_5 $+5C$ \rightarrow $2V$ $+$ 5 CO $0,40$ моль $0,80$ моль Fe_2O_3 $+3C$ \rightarrow $2Fe$ $+$ 3 CO $m=v\cdot M$ $m(V_2O_5) = 0,54\cdot 182 = 98,28$ г $m(Fe_2O_3) = 0,40\cdot 160 = 64,00$ г

$$\omega\% = \frac{m \text{ вещества}}{m \text{ смеси}} \cdot 100 \%$$

$$\omega\%(V_2O_5) = \frac{m(V_2O_5)}{m \text{ смеси}} \cdot 100 \%$$

$$\omega\%(V_2O_5) = \frac{98,28}{162,28} \cdot 100 \% = 60,56 \%$$

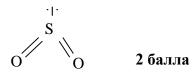
 $m (cmecu) = 98,28+64,00=162,28 \ \varepsilon$

5 баллов

$$MgO + C \xrightarrow{t} Mg + CO$$
 $2(MgO \cdot CaO) + Si \xrightarrow{t} 2Mg + Ca_2SiO_4$ $2Al_2O_{3 \text{ (расплав в }Na_3AlF_6)} \xrightarrow{t} 4Al + 3O_2$ $TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$ 3 балла

- 5) Это связано с близостью ионных радиусов железа и ванадия. **1 ба**лл
- 6) С увеличением номера периода возрастает число электронных уровней (оболочек), что приводит к увеличению атомных радиусов. Поэтому при переходе от V к Nb происходит возрастание атомного радиуса. Предполагаемое возрастание атомного радиуса Ta за счет добавление еще одного уровня компенсируется влиянием лантаноидного сжатия, которое оказывает существенное влияние на размеры атомов элементов 6-го периода. Исходя из этого Nb и Ta характеризуется практически одинаковыми величинами атомных радиусов.

7)
$$V_2O_5 + 6\ NaOH \rightarrow 2\ Na_3VO_4 + 3H_2O$$
 $V_2O_5 + 6\ HCl_{\text{конц}} \rightarrow 2\ VO\ Cl_2 + Cl_2 + 3H_2O$ $V_2O_5 + 2\ HNO_{3(\text{конц})} \rightarrow 2\ VO_2\ NO_3 + 3H_2O$ 3 балла


Задача 2

1)
$$\rho = \frac{m}{v}$$

Для 1 моль $\rho = \frac{M}{v_M}$ $M = \rho \cdot V_M$
 $M(A) = 2,86 \cdot 22,4 = 64,06 \Gamma/\text{моль} \approx 64 \Gamma/\text{моль}$
 $A = E_2O_n$ $M(E) = x \Gamma/\text{моль}$
 $n = 1$ E_2O $x = (64-16)/2=24 \Gamma/\text{моль}$. $Mg(-)$
 $n = 2$ EO $x = 64-16=48 \Gamma/\text{моль}$. $Ti(-)$
 $n = 3$ E_2O_3 $x = (64-48)/2=8 \Gamma/\text{моль}$. $(-)$
 $n = 4$ EO_2 $x = 64-32=32 \Gamma/\text{моль}$. $S(+)$
 $n = 5$ E_2O_5 $x = (64-80)/2=-8 \Gamma/\text{моль}$. $(-)$
 $n = 6$ EO_3 $x = 64-48=16 \Gamma/\text{моль}$. $O(-)$
 $A = SO_2$

4 балла

3 балла

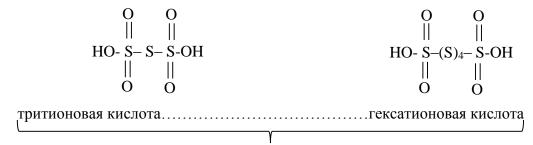
2)
$$m = V \cdot \rho$$
 $m_{p-pa}(NaOH)=163,93 \cdot 1,22=200 \ \Gamma$ $\omega\%=\frac{m_{B-Ba}}{m_{p-pa}}100\%$ $m_{B-Ba}=\frac{\omega\%\cdot m_{p-pa}}{100\%}$ $m(NaOH)=(20\cdot 200)/100=40 \ \Gamma$ $m(SO_2)=238,40-200,00=38,40 \ \Gamma$ $v=\frac{m}{M}$ $v(NaOH)=40/40=1 \ \text{моль}$ $v(SO_2)=\frac{38,40}{64}=0,6 \ \text{моль}$

$$\nu(NaHSO_3) = 0.2$$
 моль $\nu(Na_2SO_3) = 0.4$ моль

$$m=\nu\cdot M$$
 m (NaHSO₃) = 0,2·104 = 20,8 г m (Na₂SO₃) = 0,4·126 = 50,4 г ω (NaHSO₃) = (20,8/238,40)100% = 8,72% ω (Na₂SO₃) = (50,4/238,40)100% = 21,14% **4 ба**лла

- $2SO_2+O_2\rightarrow 2SO_3$ **2 балла** $SO_3+H_2SO_{4(KOHII)}\rightarrow H_2S_2O_{7(OЛЕУМ)}$ **2 балла** $H_2S_2O_7+H_2O\rightarrow H_2SO_4$ **2 балла** $B=H_2SO_4$ **2 балла**
- 4) Растворение SO₃ в воде сопровождается выделением большого количества теплоты и образованием сернокислотного тумана, который разрушает стенки реактора. Поэтому SO₃ поглощают концентрированной серной кислотой с образованием олеума (смесь полисерных кислот). При взаимодействии последнего с водой образуется серная кислота.

2 балла


5)
$$Cu + 2H_2SO_{4(KOHII)} \rightarrow CuSO_4 + SO_2 + 2H_2O$$
 3 балла

пероксомоносерная кислота (кислота Каро)

пероксодисерная кислота

дисерная кислота

дитионовая кислота

политионовые кислоты

тиосерная кислота

дисернистая кислота

сернистая кислота

трисерная кислота

2 балла

Задача 3

1)
$$N_2+3H_2 \frac{tp}{\ker} 2NH_3$$

 $t=400-450$ °C
 $p=100-100000$ атм
 $\ker=Fe/Pt$
4 балла

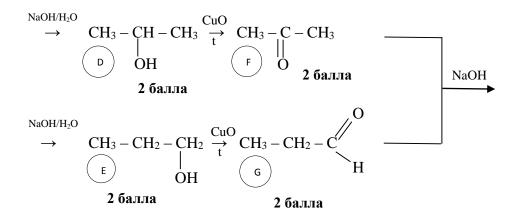
2)
$$K = \frac{[NH_3]^2}{[N_2][H_2]^3}$$
 или $K = \frac{C_{NH3}^2}{C_{N2}C_{H2}^3}$ или $K = \frac{P_{NH3}^2}{P_{N2}P_{H2}^3}$ или $K = \frac{\chi_{NH3}^2}{\chi_{N2}\chi_{H2}^3}$ 3 балла

3)
$$N_2 + 3H_2 \leftrightarrow 2NH_3$$

 $ucx \quad 1 \quad 3 \quad -$
 $pear \quad x \quad 3x \quad 2x$
 $pabh \quad 1-x \quad 3-3x \quad 2x$

5 баллов

- 4)
- повысить давление; 2 балла
- увеличить концентрацию N_2 или H_2 ; **2 балла**
- выводить из зоны реакции (уменьшить концентрацию NH₃). **2 балла**
- 5) Тройная прочная внутримолекулярная связь в молекуле N_2 является причиной малой реакционной способности молекулярного азота при обычных условиях. 6Li + $N_2 \rightarrow 2Li_3N$


1 балл

6)

- a) $NH_4NO_3 + NaOH \xrightarrow{t} NaNO_3 + NH_3 + H_2O$ **1 ба**лл
- б) 8Al + 3NaNO₃ + 5NaOH + 18H₂O \rightarrow 8Na[Al(OH)₄] + 3NH₃ **1 балл** вместо Al можно использовать Zn
- в) $Mg_3N_2 + 6H_2O \xrightarrow{t} 3Mg(OH)_2 + 2NH_3$ **1 ба**лл
- Γ) 3N₂H₄ \rightarrow 4NH₃ + N₂ **1 ба**лл

Задача 4

1) Для
$$C_x H_y = C_n H_{2n+2}$$
 $W_C = \frac{14n}{14n+2} = 0.8182 => n = 3$, $C_3 H_8$, CH_3 - CH_2 - CH_3

3) Оптические изомеры Н:

Цис/транс изомеры I:

OH
$$C - CH_2 - C - CH_3$$

$$CH_2CH_3$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$C - CH_2$$

$$CH_3CH_2$$

$$C - CH_2$$

$$CH_3CH_2$$

$$C - CH_2$$

$$C - CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

$$CH_3CH_2$$

2 балла 2 балла